Бензойная кислота (в виде триэтаноламинной соли)

Содержание:

Структурная изомерия

Для  предельных карбоновых кислот характерна структурная изомерия – изомерия углеродного скелета и межклассовая изомерия.

Структурные изомеры – это соединения с одинаковым составом, которые отличаются порядком связывания атомов в молекуле, т.е. строением молекул.

Изомеры углеродного скелета характерна для карбоновых кислот, которые содержат не менее четырех атомов углерода.

Например. Формуле С4Н8О2 соответствуют бутановая и 2-метилпропановая кислота
Бутановая (масляная) кислота  Изомасляная (2-метилпропановая) кислота

Межклассовые изомеры — это вещества разных классов с различным строением, но одинаковым составом. Карбоновые кислоты изомерны сложным эфирам. Общая формула и спиртов, и простых эфиров — CnH2nО2.

Например. Межклассовые изомеры с общей формулой С2Н4О2: уксусная кислота СН3–CОOH  и метилформиат H–COOCH3
Уксусная кислота Метиловый эфир муравьиной кислоты
СН3–CОOH HCOOCH3

Общую формулу  СnH2nO2 могут также иметь многие другие полифункциональные соединения, например:  альдегидоспирты, непредельные диолы, циклические простые диэфиры и т.п.

Химические свойства карбоновых кислот

.

Для карбоновых кислот характерны следующие свойства:

  • кислотные свойства, замещение водорода на металл;
  • замещение группы ОН
  • замещение атома водорода в алкильном радикале
  • образование сложных эфиров — этерификация

1. Кислотные свойства

Кислотные свойства карбоновых кислот возникают из-за смещения электронной плотности к карбонильному атому кислорода и вызванной этим дополнительной (по сравнению со спиртами и фенолами) поляризацией связи О–Н.
Карбоновые кислоты – кислоты средней силы.

В водном растворе карбоновые кислоты частично диссоциируют на ионы:  

R–COOH ⇆ R-COO– + H+

1.1. Взаимодействие с основаниями 

Карбоновые кислоты реагируют с большинством оснований. При взаимодействии карбоновых кислот с основаниями образуются соли карбоновых кислот и вода.

CH3COOH + NaOH = CH3COONa + H2O

Карбоновые кислоты реагируют с щелочами, амфотерными гидроксидами, водным раствором аммиака и нерастворимыми основаниями. 

Например, уксусная кислота растворяет осадок гидроксида меди (II)

Например, уксусная кислота реагирует с водным раствором аммиака с образованием ацетата аммония

CH3COOH + NH3 = CH3COONH4

1.2. Взаимодействие с металлами

Карбоновые кислоты реагируют с активными металлами. При взаимодействии карбоновых кислот с металлами образуются соли карбоновых кислот и водород.

Например, уксусная кислота взаимодействует с кальцием с образованием ацетата кальция и водорода.

1.3. Взаимодействие с основными оксидами

Карбоновые кислоты реагируют с основными оксидами с образованием солей карбоновых кислот и воды.

Например, уксусная кислота взаимодействует с оксидом бария с образованием ацетата бария и воды.

Например, уксусная кислота реагирует с оксидом меди (II)

2СН3СООН  + CuO  = H2О  +  ( CH3COO)2 Cu

1.4. Взаимодействие с с солями более слабых и летучих (или нерастворимых) кислот

Карбоновые кислоты реагируют с солями более слабых, нерастворимых и летучих кислот. 

Например, уксусная кислота растворяет карбонат кальция

Качественная реакция на карбоновые кислоты: взаимодействие с содой (гидрокарбонатом натрия) или другими гидрокарбонатами. В результате наблюдается выделение углекислого газа

Производные

  • 2,3-дигидроксибензойная кислота (пирокатехиновая кислота)
  • 2,4-дигидроксибензойная кислота (бета-резорциловая кислота)
  • 2,5-дигидроксибензойная кислота (гентизиновая кислота)
  • 2,6-дигидроксибензойная кислота (гамма-резорциловая кислота)
  • 3,4-дигидроксибензойная кислота (протокатехиновая кислота)
  • 3,5-дигидроксибензойная кислота (альфа-резорциловая кислота)
  • 3-нитробензойная кислота
  • 3,5-динитробензойная кислота
  • Толуиловые кислоты

Соли

Соли бензойной кислоты называются бензоатами, например:

  • Бензоат аммония
  • Бензоат лития
  • Бензоат натрия
  • Бензоат магния
  • Бензоат марганца
  • Бензоат меди(II)
  • Бензоат ртути(II)
  • Бензоат свинца(II)
  • Бензоат серебра

Общая характеристика Benzoic acid

Benzoic acid (Бензойд Эйсид — C7H6O2 (or C6H5COOH)) – это бензойная кислота, а так же её многочисленные эфиры, которые великолепно чувствуют себя в эфирных маслах, в бальзамах, производная от бензойной смолы.

Впервые бензойная кислота была получена в 16 столетии из росного ладана путем возгонки. Спустя 3 века ученый Юстус фон Либих смог выявить структуру бензойной кислоты. Тогда же, в 19 веке вместе с другими немецкими химиками ему удалось установить немало сходств между свойствами бензойной кислоты и гиппуровой кислоты. Уже в 20 столетии бензойную кислоту стали активно использовать как пищевой консервант при изготовлении различных продуктов питания. Основанием для этого стали некоторые полезные свойства кислота, а именно – противомикробное и противогрибковое.

В настоящее время Benzoic acid производится окислением толуола с использованием катализаторов. Несколько ранее ее получали из фталевой кислоты или бензотрихлорида, но от этого способа было решено отказаться в дороговизны, да и технологический процесс был слишком сложным. Кроме этого кислоту можно встретить в природе в некоторых ягодах, таких как клюква, малина или брусника, а также в чае, анисе, вишневом дереве и коре акакии.

Бензойная кислота представляет собой белое кристаллическое вещество. По своей форме она напоминает тонкие длинные листочки либо же иголочки, блестящие при попадании солнечных лучей либо света лампы. Она с легкостью растворяется  в разных веществах, будь то обычная вода, жир или спирт. Кроме того, бензойная кислота имеет свойство расплавляться и переходить в газообразное состояние. Происходит это при температуре ее нагревания 122 градуса по Цельсию.

Бензоаты (эфиры и соли бензойной кислоты) активно используют в пищевой промышленности, как пищевые консерванты (например: Е-210, Е-211, Е-212, Е-213). Обусловлено это лёгкостью и легкодоступностью производства консерванта. Их основное преимущество – подавление роста некоторых видов грибков, дрожжей и бактерий.  В рамках законодательства применение этой кислоты допустимо – 0,05 до 0,1 %. И не более.

Применение полезных свойств Benzoic acid

В косметике

Для косметических целей C7H6O2 производится, практически всегда, синтетическим путём. Основная роль добавки – консервант, подавление роста бактерий, увеличение срока годности товара. Но по международным стандартам производитель обязан указывать лишь 40% всех ингредиентов, входящих в состав вашей парфюмированой баночки в косметичке. И, скорее всего, о бензойной кислоте в составе вас предупредят, но довольно отдалённо – не указывая явного процентного соотношения.

Если говорить, в каких косметических средствах используется бензойная кислота, то первым делом нужно обратить внимание на крема, лосьоны и скрабы для проблемной кожи. Обладая свойством активной борьбы с микробами, кислота в составе этих косметических средств поможет избавиться от прыщей и покраснений на лице и на других частях тела

Также она применяется для отбеливания кожи, удаления пигментных пятен и веснушек.

В пищевой промышленности

В пищевой промышленности используется антимикробное свойство бензойной кислоты. Так увидеть ее можно в составе таких продуктов, как соусы, кетчуп, ягодные и овощные консервы, рыбные продукты, алкогольные и безалкогольные напитки.

В медицине

Бензойная кислота активно борется с грибком и различными микробами, поэтому ее часто используют в медицине при изготовлении препаратов для лечения грибка кожи и некоторых лишайных заболеваний.

Общая информация

С точки зрения химии добавка Е-210 — это карбоновая кислота, относящаяся к классу простейших одноосновных кислот ароматического ряда. Химическая формула бензойной кислоты: C7H6O2 (C6H5COOH).

С физической точки зрения бензойная кислота представляет собой кристаллический порошок белого цвета с характерным запахом. Добавка Е-210 плохо растворима в воде, из-за чего вместо бензойной кислоты чаще всего применяется бензоат натрия (пищевая добавка E-211). В то же время добавка Е-210 достаточно хорошо растворима в диэтиловом эфире и этаноле.

Впервые бензойная кислота была получена методом сублимации в 16 веке из росного ладана (бензойной смолы). Отсюда бензойная кислота и получила своё название. В 1832 году немецким химиком Юстусом фон Либихом была определена структура бензойной кислоты, а также исследованы ее свойства и связь с гиппуровой кислотой. В 1875 были обнаружены и изучены антигрибковые свойства бензойной кислоты, в результате чего она долгое время применялась при консервировании фруктов.

В промышленности добавку Е-210 получают методом окислением толуола (метилбензола) при участии катализаторов. Этот процесс использует дешевое сырье и считается экологически чистым.

Бензойная кислота хорошо всасывается организмом человека и в виде гиппуровой кислоты (взаимодействуя с белковыми соединениями) выводится через почки. Существуют обоснованные опасения, что пищевые добавки Е-210 и E-211 могут вступать в безалкогольных напитках в реакции с аскорбиновой кислотой (витамин С, добавка E-300) с образованием свободного бензола, который является сильным канцерогеном. Поэтому рекомендуется избегать употребления напитков, в которых содержаться эти добавки одновременно.

Применение

Калориметрия

Бензойная кислота используется как вещество в качестве теплового стандарта для калибровки калориметров по температуре и теплоёмкости, так как теплота кристаллизации и плавления хорошо известны и воспроизводимы.

Сырьё

Бензойная кислота служит для получения многих реактивов, наиболее значимые из них:

Бензоилхлорид, C6H5C(O)Cl, получается обработкой бензойной кислоты тионилхлоридом, фосгеном или хлоридами фосфора PCl3 и PCl5

C6H5C(O)Cl — важное исходное вещество для некоторых производных бензойной кислоты, таких как бензилбензоат, используемый как искусственный ароматизатор и репеллент.
Бензоатные пластификаторы, такие как гликоль-, диэтиленгликоль- и триэтиленгликолевые эфиры, получаемые переэтерефикацией метилбензоата с соответствующим диолом. Альтернативно эти вещества получаются действием бензоилхлорида на соответствующий диол

Эти пластификаторы используются с соответствующими эфирами терефталевой кислоты.
Фенол, C6H5OH, получаемый окислительным декарбоксилированием при 300—400 °C. Необходимая температура, может быть понижена до 200 °C добавлением каталитических количеств солей меди (II). Далее фенол может быть конвертирован в циклогексанол, который служит исходным веществом в синтезе нейлона.

Консервант

Бензойную кислоту и её соли используют при консервировании пищевых продуктов (пищевые добавки E210, E211, E212, E213).

Бензойная кислота, блокируя ферменты, замедляет обмен веществ во многих одноклеточных микроорганизмах и грибках. Она подавляет рост плесени, дрожжей и некоторых бактерий.

В пищевые продукты её добавляют в чистом виде или в виде натриевой, калиевой или кальциевой соли.

Губительное действие на микрофлору начинается с абсорбции бензойной кислоты липидной стенкой клетки.

Поскольку через стенку клетки может проникнуть только недиссоциированная кислота, бензойная кислота проявляет антимикробное действие только в кислых пищевых продуктах.

Если внутриклеточный pH 5 или меньше, анаэробная ферментация глюкозы через фосфорфруктокиназу уменьшается на 95 %. Эффективность бензойной кислоты и бензоатов зависит от кислотности (pH) пищи.

Кислая пища, напитки, такие, как фруктовые соки, (содержащие лимонную кислоту), газированные напитки, содержащие в растворе (углекислый газ), безалкогольные напитки с (фосфорной кислотой), соленья (молочная кислота) и другие кислые пищевые продукты консервируются бензойной кислотой и её солями.

Принятые и оптимальные концентрации бензойной кислоты при консервации пищи 0,05—0,1 %.

Медицина

Бензойную кислоту применяют в медицине при кожных заболеваниях, как наружное антисептическое (противомикробное) и фунгицидное (противогрибковое) средства, при трихофитиях и микозах, а её натриевую соль, — бензоат натрия — как отхаркивающее средство.

Другие применения

Эфиры бензойной кислоты (со спиртами от метилового до амилового) обладают сильным и приятным запахом и применяются в парфюмерной промышленности.

Некоторые другие производные бензойной кислоты, такие как, например, хлор- и нитробензойные кислоты, широко применяются для синтеза красителей.

Физико-химические свойства

кислота:

-бензойный

-bencenocarboxílico

-dracílico

-carboxybenzene

-bencenofórmico

Физическое описание

Твердые или в форме кристаллов, как правило, белого цвета, но могут иметь бежевый цвет, если они содержат определенные примеси. Его кристаллы чешуйчатые или в форме иголок (см. Первое изображение).

Растворимость в органических растворителях

-1 г бензойной кислоты растворяют в объеме, равном: 2,3 мл холодного спирта; 4,5 мл хлороформа; 3 мл эфира; 3 мл ацетона; 30 мл четыреххлористого углерода; 10 мл бензола; 30 мл сероуглерода; и 2,3 мл скипидарного масла.

-Он также растворим в эфирных и жирных маслах.

-Это слабо растворяется в петролейном эфире.

-Его растворимость в гексане составляет 0,9 г / л, в метаноле 71,5 г / л и в толуоле 10,6 г / л..

реакции

-При контакте с основаниями (NaOH, KOH и др.) Образует бензоатные соли. Например, если он реагирует с NaOH, он образует бензоат натрия, C6H5COONa.

-Реагирует со спиртами с образованием сложных эфиров. Например, его реакция с этиловым спиртом приводит к образованию этилового эфира. Некоторые эфиры бензойной кислоты выполняют функцию пластификаторов..

-Реагирует с пентахлоридом фосфора, PCl5, с образованием бензоилхлорида, галогенангидрида кислоты. Бензоилхлорид может реагировать с аммонием (NH3) или амин, такой как метиламин (СН3Нью-Гемпшир2) для образования бензамида.

-Реакция бензойной кислоты с серной кислотой приводит к сульфированию ароматического кольца. Функциональная группа -SO3H заменяет атом водорода в мета-положении кольца.

-Может реагировать с азотной кислотой, с использованием серной кислоты в качестве катализатора, образуя мета-нитробензойную кислоту.

-В присутствии катализатора, такого как хлорид железа, FeCl3, Бензойная кислота реагирует с галогенами; например, реагирует с хлором с образованием мета-хлорбензойной кислоты.

Uses

Food preservative

Benzoic acid and its salts are used as a food preservative, represented by the E-numbers E210, E211, E212, and E213. Benzoic acid inhibits the growth of mold, yeast and some bacteria. It is either added directly or it is created from reactions with its sodium, potassium or calcium salt. The mechanism starts with the absorption of benzoic acid in to the cell. If the intracellular pH changes to 5 or lower the anaerobic fermentation of glucose through phosphofructokinase is decreased by 95 percent. The effectivity of benzoic acid and benzoate is thus dependent on the pH of the food. Acidic food and beverage like fruit juice (citric acid), sparkling drinks (carbon dioxide), soft drinks (phosphoric acid), pickles (vinegar) or other acidified food are preserved with benzoic acid and benzoates.

Concern has been expressed that benzoic acid and its salts may react with ascorbic acid (vitamin C) in some soft drinks, forming small quantities of benzene.

Synthesis of other chemicals

Benzoic acid is used to make a large number of chemicals, important examples:

  • Benzoyl chloride, C6H5C(O)Cl, is obtained by treatment of benzoic with thionyl chloride, phosgene or one of the chlorides of phosphorus. C6H5C(O)Cl is an important starting material for several benzoic acid derivates like benzyl benzoate, which is used as artificial flavours and insect repellents.
  • Benzoyl peroxide, [C6H5C(O)O]2, is obtained by treatment with peroxide. The peroxide is a radical starter in polymerization reactions and also a component in cosmetic products.
  • Benzoate plasticizers, such as the glycol-, diethylengylcol-, and triethyleneglycol esters are obtained by transesterification of methyl benzoate with the corresponding diol. Alternatively these species arise by treatment of benzoylchloride with the diol. These plasticizers are used similarly to those derived from terephthalic acid ester.
  • Phenol, C6H5OH, is obtained by oxidative decarboxylation at 300-400°C. The temperature required can be lowered to 200°C by the addition of catalytic amounts of copper(II) salts. The phenol can be converted to cyclohexanol, which is than starting material for nylon synthesis.

Medicinal

Benzoic acid is a constituent of Whitfield Ointment which is used for the treatment of fungal skin diseases such as tinea, ringworm and athlete’s foot. It is also considered an effective treatment for acne.

Влияние на здоровье

Использование benzoic acid в косметике долго считалось нормой. Впрочем, было известно о появлении у некоторых людей аллергии. После попадания в организм она распадается на продукты трансформации и выводится с мочой.

Исследования выявили некоторые факты:

При нагревании Е210 способна выделять бензол, который является канцерогенным

Поэтому хранить содержащие Е210 продукты питания, косметику и удобрения важно правильно, не допуская сильного нагрева.
Влияние Е210 на домашних животных, в частности на кошек, губительно: концентрация 0,01 мг на килограмм веса приводит к сильному поражению почек.
При употреблении продуктов, содержащих Е210 и Е300 (аскорбиновая кислота), образуется бензол. Поэтому прием безалкогольных напитков и апельсинов рекомендуется разграничить двумя часами.

Чтобы не перегружать почки, в пищевой промышленности была установлена норма содержания этого консерванта в количестве пяти миллиграмм на килограмм готового продукта питания. Интересно, что в Японии эта концентрация меньше – два миллиграмма.

Воздействие бензола на здоровье

Основные пути воздействия бензола происходят через вдыхание, контакт с кожей, контакт с глазами.

Вдыхание. Может раздражать нос и горло. Может повредить нервную систему. Симптомы могут включать головную боль, тошноту, головокружение, сонливость и спутанность сознания. Сильное воздействие может привести к потере сознания.

Контакт с кожей. Вызывает раздражение от умеренного до сильного. Симптомы включают боль, покраснение и отек. Он может впитываться через кожу, но вредных последствий не ожидается. Любой контакт с кожей также связан со значительным ингаляционным воздействием.

Контакт с глазами. Вызывает раздражение от умеренного до сильного. Симптомы включают болезненные ощущения, покраснение глаз и рвоту. Пары также раздражают глаза.

Проглатывание. Может вызывать эффекты, описанные при вдыхании. Опасность для легких. При проглатывании или рвоте может втягиваться в легкие, вызывая серьезное повреждение легких. Может привести к смерти.

Классификация по строению углеводородного радикала

  • Предельные карбоновые кислоты –  карбоксильная группа СООН соединена с предельным радикалом. Например, этановая кислота СН3–СООН.
  • Непредельные карбоновые кислоты – карбоксильная группа СООН соединена с непредельным радикалом. Например, акриловая кислота: СН2=СН–СООН.
  • Ароматические кислоты — карбоксильная группа СООН соединена с непредельным радикалом. Например, бензойная кислота: С6Н5СООН.
  • Циклические кислоты — карбоксильная группа СООН соединена с углеводородным циклом. Например, циклопропанкарбоновая кислота: С3Н5СООН.

Строение карбоновых кислот

Карбоксильная группа сочетает в себе две функциональные группы – карбонил и гидроксил, взаимно влияющие друг на друга.

Электроотрицательность кислорода (ЭО = 3,5) больше электроотрицательности водорода (ЭО = 2,1) и углерода (ЭО = 2,4).

Электронная плотность смещена к более электроотрицательному атому кислорода.

Атом углерода карбоксильной группы находится в состоянии sp2-гибридизации, образует три σ-связи и одну π-связь.

Водородные связи и физические свойства карбоновых кислот

В жидком состоянии и в растворах молекулы карбоновых кислот образуют межмолекулярные водородные связи. Водородные связи вызывают притяжение и ассоциацию молекул карбоновых кислот.

Молекулы карбоновых кислот с помощью водородных связей соединены в димеры.

Это приводит к увеличению растворимости в воде и высоким температурам кипения низших карбоновых кислот.

С увеличением молекулярной массы растворимость кислот в воде уменьшается.

Номенклатура карбоновых кислот

Предельные одноосновные карбоновые кислоты.

Тривиальное название Систематическое название Название соли и эфира Формула кислоты
Муравьиная Метановая Формиат (метаноат) HCOOH
Уксусная Этановая Ацетат (этаноат) CH3COOH
Пропионовая Пропановая Пропионат (пропаноат) CH3CH2COOH
Масляная Бутановая Бутират (бутаноат) CH3(CH2)2COOH
Валериановая Пентановая Пентаноат CH3(CH2)3COOH
Капроновая Гексановая Гексаноат CH3(CH2)4COOH
Пальмитиновая Гексадекановая Пальмитат С15Н31СООН
Стеариновая Октадекановая Стеарат С17Н35СООН

Таблица. Непредельные одноосновные карбоновые кислоты.

Тривиальное название Систематическое название Название соли и эфира Формула кислоты
Акриловая Пропеновая Акрилат CH2=CH–COOH  
Метакриловая 2-Метилпропеновая Метакрилат CH2=C(СH3)–COOH 
Кротоновая транс-2-Бутеновая Кротонат СН3 -CH=CH–COOH 
Олеиновая 9- цис-Октадеценовая Олеат

СН3(СН2)7СН=СН(СН2)7СООН

Линолевая 9,12-цис-Октадекадиеновая Линолеат СН3(СН2)4(СН=СНСН2)2(СН2)6СООН
Линоленовая 9,12,15-цис-Октадекатриеновая Линоленоат СН3СН2(СН=СНСН2)3(СН2)6СООН

Таблица. Двухосновные карбоновые кислоты.

Тривиальное название Систематическое название Название соли и эфира Формула кислоты
Щавелевая Этандиовая Оксалат НООС – COOH
Малоновая Пропандиовая Малонат НООС-СН2-СООН
Янтарная Бутандиовая Сукцинат НООС-(СН2)2-СООН
Глутаровая Пентандиовая Глутарат НООС-(СН2)3-СООН
Адипиновая Гександиовая Адипинат НООС-(СН2)4-СООН
Малеиновая цис-Бутендиовая Малеинат цис-НООССН=СНСООН
Фумаровая транс-Бутендиовая Фумарат транс-НООССН=СНСООН

Таблица. Ароматические карбоновые кислоты.

Тривиальное название Систематическое название Название соли и эфира Формула кислоты
Бензойная Фенилкарбоновая Бензоат
Фталевая Бензол-1,2-дикарбоновая кислота  Фталат
Изофталевая Бензол-1,3-дикарбоновая кислота  Изофталат
Терефталевая Бензол-1,4-дикарбоновая кислота  Терефталат

Биологическое действие и влияние на здоровье человека

Бензойная кислота в свободном виде и виде сложных эфиров встречается в составе многих растений и животных. Значительное количество бензойной кислоты находится в ягодах (около 0,05 %). Зрелые плоды некоторых видов вакциниума содержат большое количество свободной бензойной кислоты. Например, в бруснике — до 0,20 % в спелых ягодах, и в клюкве — до 0,063 %. Бензойная кислота также образуется в яблоках после заражения грибком Nectria galligena. Среди животных, бензойная кислота обнаружена в основном во всеядных или фитофагных видах, например, во внутренних органах и мускулах тундряной куропатки (Lagopus muta), также как и в выделениях самцов овцебыка или азиатского слона.

Бензойная смола содержит до 20 % бензойной кислоты и 40 % бензойных эфиров.

Бензойная кислота присутствует, как часть гиппуровой кислоты (N-бензоилглицин) в моче млекопитающих, особенно травоядных животных. Бензойная кислота хорошо всасывается, через коэнзим А связывается с аминокислотой глицином в гиппуровую кислоту и в таком виде выводится через почки. Человек выделяет около 0,44 г/л гиппуровой кислоты в день в моче и больше, если находится в контакте с толуолом или бензойной кислотой. Для человека считается безопасным потребление 5 мг/кг массы тела в день. Кошки имеют гораздо более низкую толерантность к бензойной кислоте, чем мыши и крысы. Летальная доза для кошек — 300 мг/кг массы тела. Оральная ЛД50 для крыс 3040 мг/кг, для мышей 1940—2260 мг/кг.

Бензольное кольцо

Электрофильное ароматическое присоединение происходит по 3-му положению из-за электроноакцепторных свойств карбоксильной группы. Второе замещение происходит сложнее (правая часть) благодаря деактивации нитрогруппой. Наоборот, при введении электронодонорного заместителя (например, алкила), второе замещение происходит легче.

Карбоксильная группа

Все реакции, характерные для карбоксильной группы, возможны с бензойной кислотой:

  • Эфиры бензойной кислоты — продукты кислотнокатализируемой реакции со спиртами
  • Амиды бензойной кислоты легко доступны, используя для их синтеза активированные производные(такие как бензоилхлорид), или сочетающие реагенты используемые в пептидном синтезе такие как ДЦГК и ДМАП.
  • Более активный бензойный ангидрид образуется при дегидратации уксусным ангидридом или оксидом фосфора
  • Высокоактивные галогенангидриды легко получаются действием хлоридом фосфора(V) или тионилхлорида
  • Ортоэфиры могут быть получены в сухих условиях реакцией бензонитрила в кислой среде со спиртами
  • Восстановление до бензальдегида или бензилового спирта возможно при использовании LiAlH4 или борогидрида натрия
  • Декарбоксилирование серебряной соли может быть проведено при нагревании, бензойная кислота может быть декарбоксилирована при нагревании с сухими щёлочами или гидроксидом кальция.
  • Бензойная кислота образует соли

Использование шампуня

Химический состав шампуня может быть различным. Часто список ингредиентов шампуня занимает несколько абзацев.

У нас у всех разные волосы — длинные или короткие, густые или редкие, прямые или вьющиеся. И мы хотим подобрать шампунь, который подойдет к нашему типу волос и улучшит их состояние и внешний вид. И тут производители шампуней радостно идут нам навстречу и обещают мгновенное преображение волос. Только купите шампунь, и Ваши волосы станут сильными и блестящими, густыми и объемными.

Интересно, что волосы, и правда, преображаются после первого мытья, блестят, легко укладываются. И мы радуемся, не задумываясь, что вызывает такое преображение, долго ли оно продержится, и чем мы можем поплатиться за чудодейственный эффект. Ведь, если человек курил, неправильно питался, испытывал стресс и этим довел свои волосы до плачевного состояния, нужно или менять образ жизни и менять состояние волос изнутри, или использовать ударную дозу неких химических субстанций, которые быстро изменят волосы и неизвестно как повлияют на здоровье.

Если бы мы задумывались, что за быстрый внешний эффект мы расплатимся болезнями, то не спешили бы верить рекламе и сметать с полок шампуни.

Давайте читать состав шампуней на упаковке и выяснять, что может принести больше вреда, чем пользы.

Пусть Вас как покупателя не вводит в заблуждение информация о том, что шампунь прошел дерматологический контроль. Действительно, большинство продукции проходит проверку на количество токсичных компонентов. Содержание таких вредных веществ в шампунях как свинец, ртуть, мышьяк и других должно не превышать допустимую норму.

Однако нормы вредных веществ различаются в разных странах. Шампунь с одним и тем же названием, выпущенный в Европе, будет отличаться по составу от сделанного в Китае или Индии.

Окисление аренов

Бензол устойчив к действию даже сильных окислителей. Но гомологи бензола окисляются под действием сильных окислителей. Бензол и его гомологи горят.

3.1. Полное окисление – горение

При горении бензола и его гомологов образуются углекислый газ и вода. Реакция горения аренов сопровождается выделением большого количества теплоты.

2C6H6 + 15O2  → 12CO2 + 6H2O + Q

Уравнение сгорания аренов в общем виде:

 CnH2n–6 + (3n – 3)/2 O2 → nCO2 + (n – 3)H2O + Q

При горении ароматических углеводородов в недостатке кислорода может образоваться угарный газ СО или сажа С.

Бензол и его гомологи горят на воздухе коптящим пламенем. Бензол и его гомологи образуют с воздухом и кислородом взрывоопасные смеси.

3.2. Окисление гомологов бензола

Гомологи бензола легко окисляются перманганатом и дихроматом калия в кислой или нейтральной среде при нагревании.

При этом происходит окисление всех связей у атома углерода, соседнего с бензольным кольцом, кроме связи этого атома углерода с бензольным кольцом.

Толуол окисляется перманганатом калия в серной кислоте с образованием бензойной кислоты:

Если окисление толуола идёт в нейтральном растворе при нагревании, то образуется соль бензойной кислоты – бензоат калия:

Таким образом, толуол обесцвечивает подкисленный раствор перманганата калия при нагревании.

При окислении других гомологов бензола всегда остаётся только один атом С в виде карбоксильной группы (одной или нескольких, если заместителей несколько), а все остальные атомы углерода радикала окисляются до углекислого газа или карбоновой кислоты.
Например, при окислении этилбензола перманганатом калия в серной кислоте образуются бензойная кислота и углекислый газ

Например, при окислении этилбензола перманганатом калия в нейтральной кислоте образуются соль бензойной кислоты и карбонат

Более длинные радикалы окисляются до бензойной кислоты и карбоновой кислоты:

При окислении пропилбензола образуются бензойная и уксусная кислоты:

Изопропилбензол окисляется перманганатом калия в кислой среде до бензойной кислоты и углекислого газа:

Применение

По внешнему виду бензойная кислота – продолговатые кристаллы белого цвета, которые имеют характерный блеск. При температуре 122 градуса по Цельсию переходит в газообразное состояние. Бензойная кислота растворима в спиртах, воде, жирах. В промышленных масштабах производится путем окисления толуола. Помимо этого, вещество получают из фталевой кислоты.

Консервант используется в хлебопекарной, кондитерской, пивоваренной промышленностях для производства следующей продукции:

  • фруктовых и овощных пюре;
  • безалкогольных напитков;
  • ягодных соков;
  • рыбных продуктов;
  • консервированных фруктов, оливок;
  • мороженого;
  • варенья, джема, повидла;
  • овощной консервации;
  • маргарина;
  • жевательной резинки;
  • конфет и сахарозаменителей;
  • деликатесной икры;
  • молочных изделий
  • ликера, пива, вина.

Антисептические, антибактериальные способности бензойной кислоты используют в фармакологической промышленности для производства противогрибковых медикаментов, мазей от чесотки. А специальные ванночки для стоп с применением органического соединения избавляют от чрезмерной потливости, грибка ног. Помимо этого, бензойную кислоту добавляют в сиропы от кашля, поскольку она обладает отхаркивающим свойством и разжижает мокроту.

В качестве консервирующего вещества ее используют в косметике для сохранения полезных свойств и продления срока годности кремов, лосьонов, бальзамов. Благодаря сильным отбеливающим свойствам, соединение входит в состав масок, действие которых направлено на избавление лица от веснушек, неровностей на коже, пигментных пятен.

Структура бензойной кислоты

На верхнем изображении структура бензойной кислоты представлена ​​в виде стержня и сферы. Если подсчитать количество черных сфер, то будет проверено, что их шесть, то есть шесть атомов углерода; две красные сферы соответствуют двум атомам кислорода карбоксильной группы -COOH; и, наконец, белые сферы являются атомами водорода.

Как видно, ароматическое кольцо слева, ароматичность которого показана пунктирными линиями в центре кольца. А справа группа -COOH, ответственная за кислотные свойства этого соединения.

Молекулярно, С6H5COOH имеет плоскую структуру, потому что все его атомы (кроме водорода) имеют sp-гибридизацию2.

С другой стороны, группа -COOH, очень полярная, позволяет постоянному диполю существовать в структуре; диполь, который можно наблюдать с первого взгляда, если доступна его карта электростатического потенциала.

Этот факт как следствие того, что C6H5COOH может взаимодействовать с самим собой диполь-дипольными силами; в частности, со специальными водородными мостиками.

Если наблюдается группа -COOH, будет обнаружено, что кислород C = O может принимать водородную связь; в то время как кислород O-H дарит им.

Хрустальные и водородные мосты

Бензойная кислота может образовывать две водородные связи: она получает и принимает одну одновременно. Следовательно, он образует димеры; то есть его молекула «связана» с другим.

Являются ли эти пары или димеры, C6H5COOH-HOOCC6H5, структурная основа, которая определяет твердое тело в результате его упорядочения в пространстве.

Эти димеры образуют плоскость молекул, которые, благодаря своим сильным и направленным взаимодействиям, способны установить упорядоченную структуру в твердом теле. Ароматические кольца также участвуют в этой договоренности через взаимодействия дисперсионных сил.

В результате молекулы образуют моноклинный кристалл, точные структурные характеристики которого можно изучить с помощью инструментальных методов, таких как дифракция рентгеновских лучей..

Тогда пара плоских молекул может быть размещена в пространстве преимущественно водородными связями, чтобы вызвать появление этих белых и кристаллических игл..

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector